hasktorch-0.2.0.0: Functional differentiable programming in Haskell
Safe HaskellSafe-Inferred
LanguageHaskell2010

Torch.NN

Documentation

class HasForward f a b | f a -> b where Source #

Minimal complete definition

Nothing

Methods

forward :: f -> a -> b Source #

default forward :: (Generic f, Generic a, Generic b, GHasForward (Rep f) (Rep a) (Rep b)) => f -> a -> b Source #

forwardStoch :: f -> a -> IO b Source #

default forwardStoch :: (Generic f, Generic a, Generic b, GHasForward (Rep f) (Rep a) (Rep b)) => f -> a -> IO b Source #

Instances

Instances details
HasForward Linear Tensor Tensor Source # 
Instance details

Defined in Torch.NN

HasForward UpSample Tensor Tensor Source # 
Instance details

Defined in Torch.NN

HasForward ScriptModule [IValue] IValue Source # 
Instance details

Defined in Torch.Script

HasForward Dropout (Tensor device dtype shape) (Tensor device dtype shape) Source # 
Instance details

Defined in Torch.Typed.NN.Dropout

Methods

forward :: Dropout -> Tensor device dtype shape -> Tensor device dtype shape Source #

forwardStoch :: Dropout -> Tensor device dtype shape -> IO (Tensor device dtype shape) Source #

(IsSuffixOf normalizedShape shape, KnownShape normalizedShape) => HasForward (LayerNorm normalizedShape dtype device) (Tensor device dtype shape) (Tensor device dtype shape) Source # 
Instance details

Defined in Torch.Typed.NN.Normalization

Methods

forward :: LayerNorm normalizedShape dtype device -> Tensor device dtype shape -> Tensor device dtype shape Source #

forwardStoch :: LayerNorm normalizedShape dtype device -> Tensor device dtype shape -> IO (Tensor device dtype shape) Source #

(shape'' ~ MatMul shape '[inputFeatures, outputFeatures], shape' ~ Broadcast shape'' shape'') => HasForward (Linear inputFeatures outputFeatures dtype device) (Tensor device dtype shape) (Tensor device dtype shape') Source # 
Instance details

Defined in Torch.Typed.NN.Linear

Methods

forward :: Linear inputFeatures outputFeatures dtype device -> Tensor device dtype shape -> Tensor device dtype shape' Source #

forwardStoch :: Linear inputFeatures outputFeatures dtype device -> Tensor device dtype shape -> IO (Tensor device dtype shape') Source #

(All KnownNat '[stride, padding, inputChannelSize, outputChannelSize, kernelSize, inputSize, batchSize, outputSize], ConvSideCheck inputSize kernelSize stride padding outputSize) => HasForward (Conv1d inputChannelSize outputChannelSize kernelSize dtype device) (Tensor device dtype '[batchSize, inputChannelSize, inputSize], Proxy stride, Proxy padding) (Tensor device dtype '[batchSize, outputChannelSize, outputSize]) Source # 
Instance details

Defined in Torch.Typed.NN.Convolution

Methods

forward :: Conv1d inputChannelSize outputChannelSize kernelSize dtype device -> (Tensor device dtype '[batchSize, inputChannelSize, inputSize], Proxy stride, Proxy padding) -> Tensor device dtype '[batchSize, outputChannelSize, outputSize] Source #

forwardStoch :: Conv1d inputChannelSize outputChannelSize kernelSize dtype device -> (Tensor device dtype '[batchSize, inputChannelSize, inputSize], Proxy stride, Proxy padding) -> IO (Tensor device dtype '[batchSize, outputChannelSize, outputSize]) Source #

(All KnownNat '[stride, padding, inputChannelSize, outputChannelSize, kernelSize, inputSize, batchSize, outputSize], ConvSideCheck inputSize kernelSize stride padding outputSize) => HasForward (ConvTranspose1d inputChannelSize outputChannelSize kernelSize dtype device) (Tensor device dtype '[batchSize, inputChannelSize, inputSize], Proxy stride, Proxy padding) (Tensor device dtype '[batchSize, outputChannelSize, outputSize]) Source # 
Instance details

Defined in Torch.Typed.NN.Convolution

Methods

forward :: ConvTranspose1d inputChannelSize outputChannelSize kernelSize dtype device -> (Tensor device dtype '[batchSize, inputChannelSize, inputSize], Proxy stride, Proxy padding) -> Tensor device dtype '[batchSize, outputChannelSize, outputSize] Source #

forwardStoch :: ConvTranspose1d inputChannelSize outputChannelSize kernelSize dtype device -> (Tensor device dtype '[batchSize, inputChannelSize, inputSize], Proxy stride, Proxy padding) -> IO (Tensor device dtype '[batchSize, outputChannelSize, outputSize]) Source #

(All KnownNat '[Fst stride, Snd stride, Fst padding, Snd padding, inputChannelSize, outputChannelSize, kernelSize0, kernelSize1, inputSize0, inputSize1, batchSize, outputSize0, outputSize1], ConvSideCheck inputSize0 kernelSize0 (Fst stride) (Fst padding) outputSize0, ConvSideCheck inputSize1 kernelSize1 (Snd stride) (Snd padding) outputSize1) => HasForward (Conv2d inputChannelSize outputChannelSize kernelSize0 kernelSize1 dtype device) (Tensor device dtype '[batchSize, inputChannelSize, inputSize0, inputSize1], Proxy stride, Proxy padding) (Tensor device dtype '[batchSize, outputChannelSize, outputSize0, outputSize1]) Source # 
Instance details

Defined in Torch.Typed.NN.Convolution

Methods

forward :: Conv2d inputChannelSize outputChannelSize kernelSize0 kernelSize1 dtype device -> (Tensor device dtype '[batchSize, inputChannelSize, inputSize0, inputSize1], Proxy stride, Proxy padding) -> Tensor device dtype '[batchSize, outputChannelSize, outputSize0, outputSize1] Source #

forwardStoch :: Conv2d inputChannelSize outputChannelSize kernelSize0 kernelSize1 dtype device -> (Tensor device dtype '[batchSize, inputChannelSize, inputSize0, inputSize1], Proxy stride, Proxy padding) -> IO (Tensor device dtype '[batchSize, outputChannelSize, outputSize0, outputSize1]) Source #

(All KnownNat '[Fst stride, Snd stride, Fst padding, Snd padding, inputChannelSize, outputChannelSize, kernelSize0, kernelSize1, inputSize0, inputSize1, batchSize, outputSize0, outputSize1], ConvSideCheck inputSize0 kernelSize0 (Fst stride) (Fst padding) outputSize0, ConvSideCheck inputSize1 kernelSize1 (Snd stride) (Snd padding) outputSize1) => HasForward (ConvTranspose2d inputChannelSize outputChannelSize kernelSize0 kernelSize1 dtype device) (Tensor device dtype '[batchSize, inputChannelSize, inputSize0, inputSize1], Proxy stride, Proxy padding) (Tensor device dtype '[batchSize, outputChannelSize, outputSize0, outputSize1]) Source # 
Instance details

Defined in Torch.Typed.NN.Convolution

Methods

forward :: ConvTranspose2d inputChannelSize outputChannelSize kernelSize0 kernelSize1 dtype device -> (Tensor device dtype '[batchSize, inputChannelSize, inputSize0, inputSize1], Proxy stride, Proxy padding) -> Tensor device dtype '[batchSize, outputChannelSize, outputSize0, outputSize1] Source #

forwardStoch :: ConvTranspose2d inputChannelSize outputChannelSize kernelSize0 kernelSize1 dtype device -> (Tensor device dtype '[batchSize, inputChannelSize, inputSize0, inputSize1], Proxy stride, Proxy padding) -> IO (Tensor device dtype '[batchSize, outputChannelSize, outputSize0, outputSize1]) Source #

(KnownMaybeNat paddingIdx, PaddingIdxCheck paddingIdx numEmbeds, shape' ~ Reverse (embedSize ': Reverse shape)) => HasForward (Embedding paddingIdx numEmbeds embedSize embeddingType dtype device) (Tensor device 'Int64 shape) (Tensor device dtype shape') Source # 
Instance details

Defined in Torch.Typed.NN.Sparse

Methods

forward :: Embedding paddingIdx numEmbeds embedSize embeddingType dtype device -> Tensor device 'Int64 shape -> Tensor device dtype shape' Source #

forwardStoch :: Embedding paddingIdx numEmbeds embedSize embeddingType dtype device -> Tensor device 'Int64 shape -> IO (Tensor device dtype shape') Source #

(All KnownNat '[Fst3 stride, Snd3 stride, Trd3 stride, Fst3 padding, Snd3 padding, Trd3 padding, inputChannelSize, outputChannelSize, kernelSize0, kernelSize1, kernelSize2, inputSize0, inputSize1, inputSize2, batchSize], ConvSideCheck inputSize0 kernelSize0 (Fst3 stride) (Fst3 padding) outputSize0, ConvSideCheck inputSize1 kernelSize1 (Snd3 stride) (Snd3 padding) outputSize1, ConvSideCheck inputSize2 kernelSize2 (Trd3 stride) (Trd3 padding) outputSize2) => HasForward (Conv3d inputChannelSize outputChannelSize kernelSize0 kernelSize1 kernelSize2 dtype device) (Tensor device dtype '[batchSize, inputChannelSize, inputSize0, inputSize1, inputSize2], Proxy stride, Proxy padding) (Tensor device dtype '[batchSize, outputChannelSize, outputSize0, outputSize1, outputSize2]) Source # 
Instance details

Defined in Torch.Typed.NN.Convolution

Methods

forward :: Conv3d inputChannelSize outputChannelSize kernelSize0 kernelSize1 kernelSize2 dtype device -> (Tensor device dtype '[batchSize, inputChannelSize, inputSize0, inputSize1, inputSize2], Proxy stride, Proxy padding) -> Tensor device dtype '[batchSize, outputChannelSize, outputSize0, outputSize1, outputSize2] Source #

forwardStoch :: Conv3d inputChannelSize outputChannelSize kernelSize0 kernelSize1 kernelSize2 dtype device -> (Tensor device dtype '[batchSize, inputChannelSize, inputSize0, inputSize1, inputSize2], Proxy stride, Proxy padding) -> IO (Tensor device dtype '[batchSize, outputChannelSize, outputSize0, outputSize1, outputSize2]) Source #

(All KnownNat '[Fst3 stride, Snd3 stride, Trd3 stride, Fst3 padding, Snd3 padding, Trd3 padding, inputChannelSize, outputChannelSize, kernelSize0, kernelSize1, kernelSize2, inputSize0, inputSize1, inputSize2, batchSize], ConvSideCheck inputSize0 kernelSize0 (Fst3 stride) (Fst3 padding) outputSize0, ConvSideCheck inputSize1 kernelSize1 (Snd3 stride) (Snd3 padding) outputSize1, ConvSideCheck inputSize2 kernelSize2 (Trd3 stride) (Trd3 padding) outputSize2) => HasForward (ConvTranspose3d inputChannelSize outputChannelSize kernelSize0 kernelSize1 kernelSize2 dtype device) (Tensor device dtype '[batchSize, inputChannelSize, inputSize0, inputSize1, inputSize2], Proxy stride, Proxy padding) (Tensor device dtype '[batchSize, outputChannelSize, outputSize0, outputSize1, outputSize2]) Source # 
Instance details

Defined in Torch.Typed.NN.Convolution

Methods

forward :: ConvTranspose3d inputChannelSize outputChannelSize kernelSize0 kernelSize1 kernelSize2 dtype device -> (Tensor device dtype '[batchSize, inputChannelSize, inputSize0, inputSize1, inputSize2], Proxy stride, Proxy padding) -> Tensor device dtype '[batchSize, outputChannelSize, outputSize0, outputSize1, outputSize2] Source #

forwardStoch :: ConvTranspose3d inputChannelSize outputChannelSize kernelSize0 kernelSize1 kernelSize2 dtype device -> (Tensor device dtype '[batchSize, inputChannelSize, inputSize0, inputSize1, inputSize2], Proxy stride, Proxy padding) -> IO (Tensor device dtype '[batchSize, outputChannelSize, outputSize0, outputSize1, outputSize2]) Source #

(All KnownNat '[paddingIdx, embedDim, seqLen, batchSize], (paddingIdx + 1) <= numEmbeds, 1 <= seqLen, HFoldrM IO (FoldLayers batchSize seqLen dtype device) (Tensor device dtype '[batchSize, seqLen, embedDim]) (HReplicateR numAttnLayers (TransformerLayer embedDim embedDim embedDim numHeads ffnDim dtype device)) (Tensor device dtype '[batchSize, seqLen, embedDim]), BasicArithmeticDTypeIsValid device dtype, ComparisonDTypeIsValid device dtype, ComparisonDTypeIsValid device 'Int64, KnownDType dtype, KnownDevice device) => HasForward (TransformerLM numAttnLayers numHeads ffnDim paddingIdx numEmbeds embedDim dtype device) (Tensor device 'Int64 '[batchSize, seqLen]) (Tensor device dtype '[batchSize, seqLen, numEmbeds]) Source # 
Instance details

Defined in Torch.Typed.NN.Transformer

Methods

forward :: TransformerLM numAttnLayers numHeads ffnDim paddingIdx numEmbeds embedDim dtype device -> Tensor device 'Int64 '[batchSize, seqLen] -> Tensor device dtype '[batchSize, seqLen, numEmbeds] Source #

forwardStoch :: TransformerLM numAttnLayers numHeads ffnDim paddingIdx numEmbeds embedDim dtype device -> Tensor device 'Int64 '[batchSize, seqLen] -> IO (Tensor device dtype '[batchSize, seqLen, numEmbeds]) Source #

class GHasForward (f :: Type -> Type) (a :: Type -> Type) (b :: Type -> Type) | f a -> b where Source #

Methods

gForward :: forall c c' c''. f c -> a c' -> b c'' Source #

gForwardStoch :: forall c c' c''. f c -> a c' -> IO (b c) Source #

Instances

Instances details
GHasForward (U1 :: Type -> Type) (U1 :: Type -> Type) (U1 :: Type -> Type) Source # 
Instance details

Defined in Torch.NN

Methods

gForward :: U1 c -> U1 c' -> U1 c'' Source #

gForwardStoch :: forall c c' c''. U1 c -> U1 c' -> IO (U1 c) Source #

(GHasForward f a b, GHasForward g a' b', b'' ~ (b :*: b')) => GHasForward (f :*: g) (a :*: a') b'' Source # 
Instance details

Defined in Torch.NN

Methods

gForward :: (f :*: g) c -> (a :*: a') c' -> b'' c'' Source #

gForwardStoch :: forall c c' c''. (f :*: g) c -> (a :*: a') c' -> IO (b'' c) Source #

(GHasForward f a b, GHasForward g a' b', b'' ~ (b :+: b')) => GHasForward (f :+: g) (a :+: a') b'' Source # 
Instance details

Defined in Torch.NN

Methods

gForward :: (f :+: g) c -> (a :+: a') c' -> b'' c'' Source #

gForwardStoch :: forall c c' c''. (f :+: g) c -> (a :+: a') c' -> IO (b'' c) Source #

HasForward f a b => GHasForward (K1 i f :: Type -> Type) (K1 i a :: Type -> Type) (K1 i b :: Type -> Type) Source # 
Instance details

Defined in Torch.NN

Methods

gForward :: K1 i f c -> K1 i a c' -> K1 i b c'' Source #

gForwardStoch :: forall c c' c''. K1 i f c -> K1 i a c' -> IO (K1 i b c) Source #

GHasForward f a b => GHasForward (M1 i t f) (M1 i t' a) (M1 i t' b) Source # 
Instance details

Defined in Torch.NN

Methods

gForward :: M1 i t f c -> M1 i t' a c' -> M1 i t' b c'' Source #

gForwardStoch :: forall c c' c''. M1 i t f c -> M1 i t' a c' -> IO (M1 i t' b c) Source #

class Parameterized f where Source #

Minimal complete definition

Nothing

Instances

Instances details
Parameterized Conv1d Source # 
Instance details

Defined in Torch.NN

Parameterized Conv2d Source # 
Instance details

Defined in Torch.NN

Parameterized Conv3d Source # 
Instance details

Defined in Torch.NN

Parameterized ConvTranspose1d Source # 
Instance details

Defined in Torch.NN

Parameterized ConvTranspose2d Source # 
Instance details

Defined in Torch.NN

Parameterized ConvTranspose3d Source # 
Instance details

Defined in Torch.NN

Parameterized Linear Source # 
Instance details

Defined in Torch.NN

Parameterized Parameter Source # 
Instance details

Defined in Torch.NN

Parameterized UpSample Source # 
Instance details

Defined in Torch.NN

Parameterized UpSampleSpec Source # 
Instance details

Defined in Torch.NN

Parameterized ElmanCell Source # 
Instance details

Defined in Torch.NN.Recurrent.Cell.Elman

Parameterized GRUCell Source # 
Instance details

Defined in Torch.NN.Recurrent.Cell.GRU

Parameterized LSTMCell Source # 
Instance details

Defined in Torch.NN.Recurrent.Cell.LSTM

Parameterized ScriptModule Source # 
Instance details

Defined in Torch.Script

Parameterized Tensor Source # 
Instance details

Defined in Torch.NN

Scalar a => Parameterized a Source # 
Instance details

Defined in Torch.NN

(Foldable t, Traversable t, Parameterized a) => Parameterized (t a) Source # 
Instance details

Defined in Torch.NN

Parameterized (a -> a) Source # 
Instance details

Defined in Torch.NN

Methods

flattenParameters :: (a -> a) -> [Parameter] Source #

_replaceParameters :: (a -> a) -> ParamStream (a -> a) Source #

(Parameterized a, Parameterized b) => Parameterized (a, b) Source # 
Instance details

Defined in Torch.NN

Methods

flattenParameters :: (a, b) -> [Parameter] Source #

_replaceParameters :: (a, b) -> ParamStream (a, b) Source #

(Parameterized a, Parameterized b, Parameterized c) => Parameterized (a, b, c) Source # 
Instance details

Defined in Torch.NN

Methods

flattenParameters :: (a, b, c) -> [Parameter] Source #

_replaceParameters :: (a, b, c) -> ParamStream (a, b, c) Source #

Parameterized (LSTMLayer inputSize hiddenSize directionality dtype device) Source # 
Instance details

Defined in Torch.Typed.NN.Recurrent.LSTM

Methods

flattenParameters :: LSTMLayer inputSize hiddenSize directionality dtype device -> [Parameter] Source #

_replaceParameters :: LSTMLayer inputSize hiddenSize directionality dtype device -> ParamStream (LSTMLayer inputSize hiddenSize directionality dtype device) Source #

Parameterized (LSTM inputSize hiddenSize numLayers directionality dtype device) Source # 
Instance details

Defined in Torch.Typed.NN.Recurrent.LSTM

Methods

flattenParameters :: LSTM inputSize hiddenSize numLayers directionality dtype device -> [Parameter] Source #

_replaceParameters :: LSTM inputSize hiddenSize numLayers directionality dtype device -> ParamStream (LSTM inputSize hiddenSize numLayers directionality dtype device) Source #

Parameterized (LSTMLayerStack inputSize hiddenSize numLayers directionality dtype device) Source # 
Instance details

Defined in Torch.Typed.NN.Recurrent.LSTM

Methods

flattenParameters :: LSTMLayerStack inputSize hiddenSize numLayers directionality dtype device -> [Parameter] Source #

_replaceParameters :: LSTMLayerStack inputSize hiddenSize numLayers directionality dtype device -> ParamStream (LSTMLayerStack inputSize hiddenSize numLayers directionality dtype device) Source #

Parameterized (LSTMWithInit inputSize hiddenSize numLayers directionality initialization dtype device) Source # 
Instance details

Defined in Torch.Typed.NN.Recurrent.LSTM

Methods

flattenParameters :: LSTMWithInit inputSize hiddenSize numLayers directionality initialization dtype device -> [Parameter] Source #

_replaceParameters :: LSTMWithInit inputSize hiddenSize numLayers directionality initialization dtype device -> ParamStream (LSTMWithInit inputSize hiddenSize numLayers directionality initialization dtype device) Source #

class GParameterized f where Source #

Methods

gFlattenParameters :: forall a. f a -> [Parameter] Source #

_gReplaceParameters :: forall a. f a -> ParamStream (f a) Source #

Instances

Instances details
GParameterized (U1 :: Type -> Type) Source # 
Instance details

Defined in Torch.NN

(GParameterized f, GParameterized g) => GParameterized (f :*: g) Source # 
Instance details

Defined in Torch.NN

Methods

gFlattenParameters :: (f :*: g) a -> [Parameter] Source #

_gReplaceParameters :: (f :*: g) a -> ParamStream ((f :*: g) a) Source #

(GParameterized f, GParameterized g) => GParameterized (f :+: g) Source # 
Instance details

Defined in Torch.NN

Methods

gFlattenParameters :: (f :+: g) a -> [Parameter] Source #

_gReplaceParameters :: (f :+: g) a -> ParamStream ((f :+: g) a) Source #

Parameterized c => GParameterized (K1 i c :: Type -> Type) Source # 
Instance details

Defined in Torch.NN

GParameterized f => GParameterized (M1 i t f) Source # 
Instance details

Defined in Torch.NN

Methods

gFlattenParameters :: M1 i t f a -> [Parameter] Source #

_gReplaceParameters :: M1 i t f a -> ParamStream (M1 i t f a) Source #

class Randomizable spec f | spec -> f where Source #

Methods

sample :: spec -> IO f Source #

Instances

Instances details
Randomizable BatchNormSpec BatchNorm Source # 
Instance details

Defined in Torch.NN

Randomizable Conv1dSpec Conv1d Source # 
Instance details

Defined in Torch.NN

Randomizable Conv2dSpec Conv2d Source # 
Instance details

Defined in Torch.NN

Randomizable Conv3dSpec Conv3d Source # 
Instance details

Defined in Torch.NN

Randomizable ConvTranspose1dSpec ConvTranspose1d Source # 
Instance details

Defined in Torch.NN

Randomizable ConvTranspose2dSpec ConvTranspose2d Source # 
Instance details

Defined in Torch.NN

Randomizable ConvTranspose3dSpec ConvTranspose3d Source # 
Instance details

Defined in Torch.NN

Randomizable InstanceNormSpec InstanceNorm Source # 
Instance details

Defined in Torch.NN

Randomizable LinearSpec Linear Source # 
Instance details

Defined in Torch.NN

Randomizable UpSampleSpec UpSample Source # 
Instance details

Defined in Torch.NN

Randomizable ElmanSpec ElmanCell Source # 
Instance details

Defined in Torch.NN.Recurrent.Cell.Elman

Randomizable GRUSpec GRUCell Source # 
Instance details

Defined in Torch.NN.Recurrent.Cell.GRU

Randomizable LSTMSpec LSTMCell Source # 
Instance details

Defined in Torch.NN.Recurrent.Cell.LSTM

Randomizable DropoutSpec Dropout Source # 
Instance details

Defined in Torch.Typed.NN.Dropout

(Randomizable xSpec x, Randomizable (HList xsSpec) (HList xs)) => Randomizable (HList (xSpec ': xsSpec)) (HList (x ': xs)) Source # 
Instance details

Defined in Torch.Typed.Parameter

Methods

sample :: HList (xSpec ': xsSpec) -> IO (HList (x ': xs)) Source #

Randomizable (HList ('[] :: [Type])) (HList ('[] :: [Type])) Source # 
Instance details

Defined in Torch.Typed.Parameter

Methods

sample :: HList '[] -> IO (HList '[]) Source #

(TensorOptions normalizedShape dtype device, RandDTypeIsValid device dtype) => Randomizable (LayerNormSpec normalizedShape dtype device) (LayerNorm normalizedShape dtype device) Source # 
Instance details

Defined in Torch.Typed.NN.Normalization

Methods

sample :: LayerNormSpec normalizedShape dtype device -> IO (LayerNorm normalizedShape dtype device) Source #

(KnownNat inputFeatures, KnownNat outputFeatures, KnownDType dtype, KnownDevice device, RandDTypeIsValid device dtype) => Randomizable (LinearSpec inputFeatures outputFeatures dtype device) (Linear inputFeatures outputFeatures dtype device) Source # 
Instance details

Defined in Torch.Typed.NN.Linear

Methods

sample :: LinearSpec inputFeatures outputFeatures dtype device -> IO (Linear inputFeatures outputFeatures dtype device) Source #

(KnownDevice device, KnownDType dtype, KnownNat inputDim, KnownNat hiddenDim, RandDTypeIsValid device dtype) => Randomizable (GRUCellSpec inputDim hiddenDim dtype device) (GRUCell inputDim hiddenDim dtype device) Source # 
Instance details

Defined in Torch.Typed.NN.Recurrent.Cell.GRU

Methods

sample :: GRUCellSpec inputDim hiddenDim dtype device -> IO (GRUCell inputDim hiddenDim dtype device) Source #

(KnownDevice device, KnownDType dtype, KnownNat inputDim, KnownNat hiddenDim, RandDTypeIsValid device dtype) => Randomizable (LSTMCellSpec inputDim hiddenDim dtype device) (LSTMCell inputDim hiddenDim dtype device) Source # 
Instance details

Defined in Torch.Typed.NN.Recurrent.Cell.LSTM

Methods

sample :: LSTMCellSpec inputDim hiddenDim dtype device -> IO (LSTMCell inputDim hiddenDim dtype device) Source #

(All KnownNat '[embedDim, ffnDim], KnownDType dtype, KnownDevice device, RandDTypeIsValid device dtype) => Randomizable (TransformerMLPSpec embedDim ffnDim dtype device) (TransformerMLP embedDim ffnDim dtype device) Source # 
Instance details

Defined in Torch.Typed.NN.Transformer

Methods

sample :: TransformerMLPSpec embedDim ffnDim dtype device -> IO (TransformerMLP embedDim ffnDim dtype device) Source #

(KnownNat inputChannelSize, KnownNat outputChannelSize, KnownNat kernelSize, KnownDType dtype, KnownDevice device, RandDTypeIsValid device dtype) => Randomizable (Conv1dSpec inputChannelSize outputChannelSize kernelSize dtype device) (Conv1d inputChannelSize outputChannelSize kernelSize dtype device) Source # 
Instance details

Defined in Torch.Typed.NN.Convolution

Methods

sample :: Conv1dSpec inputChannelSize outputChannelSize kernelSize dtype device -> IO (Conv1d inputChannelSize outputChannelSize kernelSize dtype device) Source #

(KnownNat inputChannelSize, KnownNat outputChannelSize, KnownNat kernelSize, KnownDType dtype, KnownDevice device, RandDTypeIsValid device dtype) => Randomizable (ConvTranspose1dSpec inputChannelSize outputChannelSize kernelSize dtype device) (ConvTranspose1d inputChannelSize outputChannelSize kernelSize dtype device) Source # 
Instance details

Defined in Torch.Typed.NN.Convolution

Methods

sample :: ConvTranspose1dSpec inputChannelSize outputChannelSize kernelSize dtype device -> IO (ConvTranspose1d inputChannelSize outputChannelSize kernelSize dtype device) Source #

(RandDTypeIsValid device dtype, KnownNat inputSize, KnownNat hiddenSize, KnownDType dtype, KnownDevice device) => Randomizable (GRULayerSpec inputSize hiddenSize 'Bidirectional dtype device) (GRULayer inputSize hiddenSize 'Bidirectional dtype device) Source # 
Instance details

Defined in Torch.Typed.NN.Recurrent.GRU

Methods

sample :: GRULayerSpec inputSize hiddenSize 'Bidirectional dtype device -> IO (GRULayer inputSize hiddenSize 'Bidirectional dtype device) Source #

(RandDTypeIsValid device dtype, KnownNat inputSize, KnownNat hiddenSize, KnownDType dtype, KnownDevice device) => Randomizable (GRULayerSpec inputSize hiddenSize 'Unidirectional dtype device) (GRULayer inputSize hiddenSize 'Unidirectional dtype device) Source # 
Instance details

Defined in Torch.Typed.NN.Recurrent.GRU

Methods

sample :: GRULayerSpec inputSize hiddenSize 'Unidirectional dtype device -> IO (GRULayer inputSize hiddenSize 'Unidirectional dtype device) Source #

(RandDTypeIsValid device dtype, KnownNat inputSize, KnownNat hiddenSize, KnownDType dtype, KnownDevice device) => Randomizable (LSTMLayerSpec inputSize hiddenSize 'Bidirectional dtype device) (LSTMLayer inputSize hiddenSize 'Bidirectional dtype device) Source # 
Instance details

Defined in Torch.Typed.NN.Recurrent.LSTM

Methods

sample :: LSTMLayerSpec inputSize hiddenSize 'Bidirectional dtype device -> IO (LSTMLayer inputSize hiddenSize 'Bidirectional dtype device) Source #

(RandDTypeIsValid device dtype, KnownNat inputSize, KnownNat hiddenSize, KnownDType dtype, KnownDevice device) => Randomizable (LSTMLayerSpec inputSize hiddenSize 'Unidirectional dtype device) (LSTMLayer inputSize hiddenSize 'Unidirectional dtype device) Source # 
Instance details

Defined in Torch.Typed.NN.Recurrent.LSTM

Methods

sample :: LSTMLayerSpec inputSize hiddenSize 'Unidirectional dtype device -> IO (LSTMLayer inputSize hiddenSize 'Unidirectional dtype device) Source #

(KnownNat inputChannelSize, KnownNat outputChannelSize, KnownNat kernelSize0, KnownNat kernelSize1, KnownDType dtype, KnownDevice device, RandDTypeIsValid device dtype) => Randomizable (Conv2dSpec inputChannelSize outputChannelSize kernelSize0 kernelSize1 dtype device) (Conv2d inputChannelSize outputChannelSize kernelSize0 kernelSize1 dtype device) Source # 
Instance details

Defined in Torch.Typed.NN.Convolution

Methods

sample :: Conv2dSpec inputChannelSize outputChannelSize kernelSize0 kernelSize1 dtype device -> IO (Conv2d inputChannelSize outputChannelSize kernelSize0 kernelSize1 dtype device) Source #

(KnownNat inputChannelSize, KnownNat outputChannelSize, KnownNat kernelSize0, KnownNat kernelSize1, KnownDType dtype, KnownDevice device, RandDTypeIsValid device dtype) => Randomizable (ConvTranspose2dSpec inputChannelSize outputChannelSize kernelSize0 kernelSize1 dtype device) (ConvTranspose2d inputChannelSize outputChannelSize kernelSize0 kernelSize1 dtype device) Source # 
Instance details

Defined in Torch.Typed.NN.Convolution

Methods

sample :: ConvTranspose2dSpec inputChannelSize outputChannelSize kernelSize0 kernelSize1 dtype device -> IO (ConvTranspose2d inputChannelSize outputChannelSize kernelSize0 kernelSize1 dtype device) Source #

(1 <= numLayers, (2 <=? numLayers) ~ flag, RandDTypeIsValid device dtype, KnownDType dtype, KnownDevice device, GRULayerStackRandomizable flag inputSize hiddenSize numLayers directionality dtype device) => Randomizable (GRULayerStackSpec inputSize hiddenSize numLayers directionality dtype device) (GRULayerStack inputSize hiddenSize numLayers directionality dtype device) Source # 
Instance details

Defined in Torch.Typed.NN.Recurrent.GRU

Methods

sample :: GRULayerStackSpec inputSize hiddenSize numLayers directionality dtype device -> IO (GRULayerStack inputSize hiddenSize numLayers directionality dtype device) Source #

(KnownDType dtype, KnownDevice device, KnownNat inputSize, KnownNat hiddenSize, KnownNat (NumberOfDirections directionality), RandDTypeIsValid device dtype, Randomizable (GRULayerStackSpec inputSize hiddenSize numLayers directionality dtype device) (GRULayerStack inputSize hiddenSize numLayers directionality dtype device), 1 <= numLayers) => Randomizable (GRUSpec inputSize hiddenSize numLayers directionality dtype device) (GRU inputSize hiddenSize numLayers directionality dtype device) Source # 
Instance details

Defined in Torch.Typed.NN.Recurrent.GRU

Methods

sample :: GRUSpec inputSize hiddenSize numLayers directionality dtype device -> IO (GRU inputSize hiddenSize numLayers directionality dtype device) Source #

(1 <= numLayers, (2 <=? numLayers) ~ flag, RandDTypeIsValid device dtype, KnownDType dtype, KnownDevice device, LSTMLayerStackRandomizable flag inputSize hiddenSize numLayers directionality dtype device) => Randomizable (LSTMLayerStackSpec inputSize hiddenSize numLayers directionality dtype device) (LSTMLayerStack inputSize hiddenSize numLayers directionality dtype device) Source # 
Instance details

Defined in Torch.Typed.NN.Recurrent.LSTM

Methods

sample :: LSTMLayerStackSpec inputSize hiddenSize numLayers directionality dtype device -> IO (LSTMLayerStack inputSize hiddenSize numLayers directionality dtype device) Source #

(KnownDType dtype, KnownDevice device, KnownNat inputSize, KnownNat hiddenSize, KnownNat (NumberOfDirections directionality), RandDTypeIsValid device dtype, Randomizable (LSTMLayerStackSpec inputSize hiddenSize numLayers directionality dtype device) (LSTMLayerStack inputSize hiddenSize numLayers directionality dtype device), 1 <= numLayers) => Randomizable (LSTMSpec inputSize hiddenSize numLayers directionality dtype device) (LSTM inputSize hiddenSize numLayers directionality dtype device) Source # 
Instance details

Defined in Torch.Typed.NN.Recurrent.LSTM

Methods

sample :: LSTMSpec inputSize hiddenSize numLayers directionality dtype device -> IO (LSTM inputSize hiddenSize numLayers directionality dtype device) Source #

(paddingIdx <= numEmbeds, 1 <= (numEmbeds - paddingIdx), (((numEmbeds - paddingIdx) - 1) + (1 + paddingIdx)) ~ numEmbeds, KnownNat paddingIdx, KnownNat numEmbeds, KnownNat embedSize, KnownDType dtype, KnownDevice device, RandDTypeIsValid device dtype) => Randomizable (EmbeddingSpec ('Just paddingIdx) numEmbeds embedSize 'Learned dtype device) (Embedding ('Just paddingIdx) numEmbeds embedSize 'Learned dtype device) Source # 
Instance details

Defined in Torch.Typed.NN.Sparse

Methods

sample :: EmbeddingSpec ('Just paddingIdx) numEmbeds embedSize 'Learned dtype device -> IO (Embedding ('Just paddingIdx) numEmbeds embedSize 'Learned dtype device) Source #

(KnownNat numEmbeds, KnownNat embedSize, KnownDType dtype, KnownDevice device, RandDTypeIsValid device dtype) => Randomizable (EmbeddingSpec ('Nothing :: Maybe Nat) numEmbeds embedSize 'Learned dtype device) (Embedding ('Nothing :: Maybe Nat) numEmbeds embedSize 'Learned dtype device) Source # 
Instance details

Defined in Torch.Typed.NN.Sparse

Methods

sample :: EmbeddingSpec 'Nothing numEmbeds embedSize 'Learned dtype device -> IO (Embedding 'Nothing numEmbeds embedSize 'Learned dtype device) Source #

Randomizable (EmbeddingSpec paddingIdx numEmbeds embedSize 'Constant dtype device) (Embedding paddingIdx numEmbeds embedSize 'Constant dtype device) Source # 
Instance details

Defined in Torch.Typed.NN.Sparse

Methods

sample :: EmbeddingSpec paddingIdx numEmbeds embedSize 'Constant dtype device -> IO (Embedding paddingIdx numEmbeds embedSize 'Constant dtype device) Source #

(All KnownNat '[embedDim, kEmbedDim, vEmbedDim, numHeads], KnownDType dtype, KnownDevice device, RandDTypeIsValid device dtype) => Randomizable (MultiheadAttentionSpec embedDim kEmbedDim vEmbedDim numHeads dtype device) (MultiheadAttention embedDim kEmbedDim vEmbedDim numHeads dtype device) Source # 
Instance details

Defined in Torch.Typed.NN.Transformer

Methods

sample :: MultiheadAttentionSpec embedDim kEmbedDim vEmbedDim numHeads dtype device -> IO (MultiheadAttention embedDim kEmbedDim vEmbedDim numHeads dtype device) Source #

(KnownNat inputChannelSize, KnownNat outputChannelSize, KnownNat kernelSize0, KnownNat kernelSize1, KnownNat kernelSize2, KnownDType dtype, KnownDevice device, RandDTypeIsValid device dtype) => Randomizable (Conv3dSpec inputChannelSize outputChannelSize kernelSize0 kernelSize1 kernelSize2 dtype device) (Conv3d inputChannelSize outputChannelSize kernelSize0 kernelSize1 kernelSize2 dtype device) Source # 
Instance details

Defined in Torch.Typed.NN.Convolution

Methods

sample :: Conv3dSpec inputChannelSize outputChannelSize kernelSize0 kernelSize1 kernelSize2 dtype device -> IO (Conv3d inputChannelSize outputChannelSize kernelSize0 kernelSize1 kernelSize2 dtype device) Source #

(KnownNat inputChannelSize, KnownNat outputChannelSize, KnownNat kernelSize0, KnownNat kernelSize1, KnownNat kernelSize2, KnownDType dtype, KnownDevice device, RandDTypeIsValid device dtype) => Randomizable (ConvTranspose3dSpec inputChannelSize outputChannelSize kernelSize0 kernelSize1 kernelSize2 dtype device) (ConvTranspose3d inputChannelSize outputChannelSize kernelSize0 kernelSize1 kernelSize2 dtype device) Source # 
Instance details

Defined in Torch.Typed.NN.Convolution

Methods

sample :: ConvTranspose3dSpec inputChannelSize outputChannelSize kernelSize0 kernelSize1 kernelSize2 dtype device -> IO (ConvTranspose3d inputChannelSize outputChannelSize kernelSize0 kernelSize1 kernelSize2 dtype device) Source #

(KnownNat hiddenSize, KnownNat numLayers, KnownNat (NumberOfDirections directionality), KnownDType dtype, KnownDevice device, Randomizable (GRUSpec inputSize hiddenSize numLayers directionality dtype device) (GRU inputSize hiddenSize numLayers directionality dtype device)) => Randomizable (GRUWithInitSpec inputSize hiddenSize numLayers directionality 'ConstantInitialization dtype device) (GRUWithInit inputSize hiddenSize numLayers directionality 'ConstantInitialization dtype device) Source # 
Instance details

Defined in Torch.Typed.NN.Recurrent.GRU

Methods

sample :: GRUWithInitSpec inputSize hiddenSize numLayers directionality 'ConstantInitialization dtype device -> IO (GRUWithInit inputSize hiddenSize numLayers directionality 'ConstantInitialization dtype device) Source #

(KnownNat hiddenSize, KnownNat numLayers, KnownNat (NumberOfDirections directionality), KnownDType dtype, KnownDevice device, Randomizable (GRUSpec inputSize hiddenSize numLayers directionality dtype device) (GRU inputSize hiddenSize numLayers directionality dtype device)) => Randomizable (GRUWithInitSpec inputSize hiddenSize numLayers directionality 'LearnedInitialization dtype device) (GRUWithInit inputSize hiddenSize numLayers directionality 'LearnedInitialization dtype device) Source # 
Instance details

Defined in Torch.Typed.NN.Recurrent.GRU

Methods

sample :: GRUWithInitSpec inputSize hiddenSize numLayers directionality 'LearnedInitialization dtype device -> IO (GRUWithInit inputSize hiddenSize numLayers directionality 'LearnedInitialization dtype device) Source #

(KnownNat hiddenSize, KnownNat numLayers, KnownNat (NumberOfDirections directionality), KnownDType dtype, KnownDevice device, Randomizable (LSTMSpec inputSize hiddenSize numLayers directionality dtype device) (LSTM inputSize hiddenSize numLayers directionality dtype device)) => Randomizable (LSTMWithInitSpec inputSize hiddenSize numLayers directionality 'ConstantInitialization dtype device) (LSTMWithInit inputSize hiddenSize numLayers directionality 'ConstantInitialization dtype device) Source # 
Instance details

Defined in Torch.Typed.NN.Recurrent.LSTM

Methods

sample :: LSTMWithInitSpec inputSize hiddenSize numLayers directionality 'ConstantInitialization dtype device -> IO (LSTMWithInit inputSize hiddenSize numLayers directionality 'ConstantInitialization dtype device) Source #

(KnownNat hiddenSize, KnownNat numLayers, KnownNat (NumberOfDirections directionality), KnownDType dtype, KnownDevice device, Randomizable (LSTMSpec inputSize hiddenSize numLayers directionality dtype device) (LSTM inputSize hiddenSize numLayers directionality dtype device)) => Randomizable (LSTMWithInitSpec inputSize hiddenSize numLayers directionality 'LearnedInitialization dtype device) (LSTMWithInit inputSize hiddenSize numLayers directionality 'LearnedInitialization dtype device) Source # 
Instance details

Defined in Torch.Typed.NN.Recurrent.LSTM

Methods

sample :: LSTMWithInitSpec inputSize hiddenSize numLayers directionality 'LearnedInitialization dtype device -> IO (LSTMWithInit inputSize hiddenSize numLayers directionality 'LearnedInitialization dtype device) Source #

(All KnownNat '[embedDim, kEmbedDim, vEmbedDim, numHeads, ffnDim], KnownDType dtype, KnownDevice device, RandDTypeIsValid device dtype) => Randomizable (TransformerLayerSpec embedDim kEmbedDim vEmbedDim numHeads ffnDim dtype device) (TransformerLayer embedDim kEmbedDim vEmbedDim numHeads ffnDim dtype device) Source # 
Instance details

Defined in Torch.Typed.NN.Transformer

Methods

sample :: TransformerLayerSpec embedDim kEmbedDim vEmbedDim numHeads ffnDim dtype device -> IO (TransformerLayer embedDim kEmbedDim vEmbedDim numHeads ffnDim dtype device) Source #

(paddingIdx <= numEmbeds, 1 <= (numEmbeds - paddingIdx), 1 <= Div embedDim 2, (((numEmbeds - paddingIdx) - 1) + (1 + paddingIdx)) ~ numEmbeds, (Div embedDim 2 * 2) ~ embedDim, All KnownNat '[ffnDim, paddingIdx, numEmbeds, embedDim], HReplicate numAttnLayers (TransformerLayerSpec embedDim embedDim embedDim numHeads ffnDim dtype device), Randomizable (HList (HReplicateR numAttnLayers (TransformerLayerSpec embedDim embedDim embedDim numHeads ffnDim dtype device))) (HList (HReplicateR numAttnLayers (TransformerLayer embedDim embedDim embedDim numHeads ffnDim dtype device))), KnownDType dtype, RandDTypeIsValid device dtype, StandardFloatingPointDTypeValidation device 'Float, BasicArithmeticDTypeIsValid device 'Float, KnownDevice device) => Randomizable (TransformerLMSpec numAttnLayers numHeads ffnDim paddingIdx numEmbeds embedDim dtype device) (TransformerLM numAttnLayers numHeads ffnDim paddingIdx numEmbeds embedDim dtype device) Source # 
Instance details

Defined in Torch.Typed.NN.Transformer

Methods

sample :: TransformerLMSpec numAttnLayers numHeads ffnDim paddingIdx numEmbeds embedDim dtype device -> IO (TransformerLM numAttnLayers numHeads ffnDim paddingIdx numEmbeds embedDim dtype device) Source #

data LinearSpec Source #

Constructors

LinearSpec 

Instances

Instances details
Show LinearSpec Source # 
Instance details

Defined in Torch.NN

Eq LinearSpec Source # 
Instance details

Defined in Torch.NN

Randomizable LinearSpec Linear Source # 
Instance details

Defined in Torch.NN

data Linear Source #

Constructors

Linear 

Instances

Instances details
Generic Linear Source # 
Instance details

Defined in Torch.NN

Associated Types

type Rep Linear :: Type -> Type Source #

Show Linear Source # 
Instance details

Defined in Torch.NN

Parameterized Linear Source # 
Instance details

Defined in Torch.NN

Randomizable LinearSpec Linear Source # 
Instance details

Defined in Torch.NN

HasForward Linear Tensor Tensor Source # 
Instance details

Defined in Torch.NN

type Rep Linear Source # 
Instance details

Defined in Torch.NN

type Rep Linear = D1 ('MetaData "Linear" "Torch.NN" "hasktorch-0.2.0.0-F6yFRaDiRF49lpq95SVuR8" 'False) (C1 ('MetaCons "Linear" 'PrefixI 'True) (S1 ('MetaSel ('Just "weight") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedStrict) (Rec0 Parameter) :*: S1 ('MetaSel ('Just "bias") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedStrict) (Rec0 Parameter)))

data Conv1dSpec Source #

Instances

Instances details
Show Conv1dSpec Source # 
Instance details

Defined in Torch.NN

Eq Conv1dSpec Source # 
Instance details

Defined in Torch.NN

Randomizable Conv1dSpec Conv1d Source # 
Instance details

Defined in Torch.NN

data Conv1d Source #

Constructors

Conv1d 

Instances

Instances details
Generic Conv1d Source # 
Instance details

Defined in Torch.NN

Associated Types

type Rep Conv1d :: Type -> Type Source #

Show Conv1d Source # 
Instance details

Defined in Torch.NN

Parameterized Conv1d Source # 
Instance details

Defined in Torch.NN

Randomizable Conv1dSpec Conv1d Source # 
Instance details

Defined in Torch.NN

type Rep Conv1d Source # 
Instance details

Defined in Torch.NN

type Rep Conv1d = D1 ('MetaData "Conv1d" "Torch.NN" "hasktorch-0.2.0.0-F6yFRaDiRF49lpq95SVuR8" 'False) (C1 ('MetaCons "Conv1d" 'PrefixI 'True) (S1 ('MetaSel ('Just "weight") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedStrict) (Rec0 Parameter) :*: S1 ('MetaSel ('Just "bias") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedStrict) (Rec0 Parameter)))

conv1dForward Source #

Arguments

:: Conv1d

layer

-> Int

stride

-> Int

padding

-> Tensor

input

-> Tensor

output

data Conv2dSpec Source #

Instances

Instances details
Show Conv2dSpec Source # 
Instance details

Defined in Torch.NN

Eq Conv2dSpec Source # 
Instance details

Defined in Torch.NN

Randomizable Conv2dSpec Conv2d Source # 
Instance details

Defined in Torch.NN

data Conv2d Source #

Constructors

Conv2d 

Instances

Instances details
Generic Conv2d Source # 
Instance details

Defined in Torch.NN

Associated Types

type Rep Conv2d :: Type -> Type Source #

Show Conv2d Source # 
Instance details

Defined in Torch.NN

Parameterized Conv2d Source # 
Instance details

Defined in Torch.NN

Randomizable Conv2dSpec Conv2d Source # 
Instance details

Defined in Torch.NN

type Rep Conv2d Source # 
Instance details

Defined in Torch.NN

type Rep Conv2d = D1 ('MetaData "Conv2d" "Torch.NN" "hasktorch-0.2.0.0-F6yFRaDiRF49lpq95SVuR8" 'False) (C1 ('MetaCons "Conv2d" 'PrefixI 'True) (S1 ('MetaSel ('Just "weight") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedStrict) (Rec0 Parameter) :*: S1 ('MetaSel ('Just "bias") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedStrict) (Rec0 Parameter)))

conv2dForward Source #

Arguments

:: Conv2d

layer

-> (Int, Int)

stride

-> (Int, Int)

padding

-> Tensor

input

-> Tensor

output

data Conv3dSpec Source #

Instances

Instances details
Show Conv3dSpec Source # 
Instance details

Defined in Torch.NN

Eq Conv3dSpec Source # 
Instance details

Defined in Torch.NN

Randomizable Conv3dSpec Conv3d Source # 
Instance details

Defined in Torch.NN

data Conv3d Source #

Constructors

Conv3d 

Instances

Instances details
Generic Conv3d Source # 
Instance details

Defined in Torch.NN

Associated Types

type Rep Conv3d :: Type -> Type Source #

Show Conv3d Source # 
Instance details

Defined in Torch.NN

Parameterized Conv3d Source # 
Instance details

Defined in Torch.NN

Randomizable Conv3dSpec Conv3d Source # 
Instance details

Defined in Torch.NN

type Rep Conv3d Source # 
Instance details

Defined in Torch.NN

type Rep Conv3d = D1 ('MetaData "Conv3d" "Torch.NN" "hasktorch-0.2.0.0-F6yFRaDiRF49lpq95SVuR8" 'False) (C1 ('MetaCons "Conv3d" 'PrefixI 'True) (S1 ('MetaSel ('Just "weight") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedStrict) (Rec0 Parameter) :*: S1 ('MetaSel ('Just "bias") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedStrict) (Rec0 Parameter)))

conv3dForward Source #

Arguments

:: Conv3d

layer

-> (Int, Int, Int)

stride

-> (Int, Int, Int)

padding

-> Tensor

input

-> Tensor

output

convTranspose1dForward Source #

Arguments

:: ConvTranspose1d

layer

-> Int

stride

-> Int

padding

-> Tensor

input

-> Tensor

output

convTranspose2dForward Source #

Arguments

:: ConvTranspose2d

layer

-> (Int, Int)

stride

-> (Int, Int)

padding

-> Tensor

input

-> Tensor

output

convTranspose3dForward Source #

Arguments

:: ConvTranspose3d

layer

-> (Int, Int, Int)

stride

-> (Int, Int, Int)

padding

-> Tensor

input

-> Tensor

output

data BatchNormSpec Source #

Constructors

BatchNormSpec 

Fields

Instances

Instances details
Show BatchNormSpec Source # 
Instance details

Defined in Torch.NN

Eq BatchNormSpec Source # 
Instance details

Defined in Torch.NN

Randomizable BatchNormSpec BatchNorm Source # 
Instance details

Defined in Torch.NN

data BatchNorm Source #

Instances

Instances details
Generic BatchNorm Source # 
Instance details

Defined in Torch.NN

Associated Types

type Rep BatchNorm :: Type -> Type Source #

Show BatchNorm Source # 
Instance details

Defined in Torch.NN

Randomizable BatchNormSpec BatchNorm Source # 
Instance details

Defined in Torch.NN

type Rep BatchNorm Source # 
Instance details

Defined in Torch.NN

data InstanceNorm Source #

Instances

Instances details
Generic InstanceNorm Source # 
Instance details

Defined in Torch.NN

Associated Types

type Rep InstanceNorm :: Type -> Type Source #

Show InstanceNorm Source # 
Instance details

Defined in Torch.NN

Randomizable InstanceNormSpec InstanceNorm Source # 
Instance details

Defined in Torch.NN

type Rep InstanceNorm Source # 
Instance details

Defined in Torch.NN

data UpSample Source #

Constructors

UpSample 

Instances

Instances details
Generic UpSample Source # 
Instance details

Defined in Torch.NN

Associated Types

type Rep UpSample :: Type -> Type Source #

Show UpSample Source # 
Instance details

Defined in Torch.NN

Parameterized UpSample Source # 
Instance details

Defined in Torch.NN

Randomizable UpSampleSpec UpSample Source # 
Instance details

Defined in Torch.NN

HasForward UpSample Tensor Tensor Source # 
Instance details

Defined in Torch.NN

type Rep UpSample Source # 
Instance details

Defined in Torch.NN

type Rep UpSample = D1 ('MetaData "UpSample" "Torch.NN" "hasktorch-0.2.0.0-F6yFRaDiRF49lpq95SVuR8" 'False) (C1 ('MetaCons "UpSample" 'PrefixI 'True) (S1 ('MetaSel ('Just "upsampleSpec") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedStrict) (Rec0 UpSampleSpec)))