{-# LANGUAGE DeriveGeneric #-}
{-# LANGUAGE FlexibleContexts #-}
{-# LANGUAGE FunctionalDependencies #-}
{-# LANGUAGE RecordWildCards #-}
{-# LANGUAGE ScopedTypeVariables #-}
module Torch.NN.Recurrent.Cell.LSTM where
import GHC.Generics
import Torch
data LSTMSpec = LSTMSpec
{ LSTMSpec -> Int
inputSize :: Int,
LSTMSpec -> Int
hiddenSize :: Int
}
deriving (LSTMSpec -> LSTMSpec -> Bool
forall a. (a -> a -> Bool) -> (a -> a -> Bool) -> Eq a
/= :: LSTMSpec -> LSTMSpec -> Bool
$c/= :: LSTMSpec -> LSTMSpec -> Bool
== :: LSTMSpec -> LSTMSpec -> Bool
$c== :: LSTMSpec -> LSTMSpec -> Bool
Eq, Int -> LSTMSpec -> ShowS
[LSTMSpec] -> ShowS
LSTMSpec -> String
forall a.
(Int -> a -> ShowS) -> (a -> String) -> ([a] -> ShowS) -> Show a
showList :: [LSTMSpec] -> ShowS
$cshowList :: [LSTMSpec] -> ShowS
show :: LSTMSpec -> String
$cshow :: LSTMSpec -> String
showsPrec :: Int -> LSTMSpec -> ShowS
$cshowsPrec :: Int -> LSTMSpec -> ShowS
Show)
data LSTMCell = LSTMCell
{ LSTMCell -> Parameter
weightsIH :: Parameter,
LSTMCell -> Parameter
weightsHH :: Parameter,
LSTMCell -> Parameter
biasIH :: Parameter,
LSTMCell -> Parameter
biasHH :: Parameter
}
deriving (forall x. Rep LSTMCell x -> LSTMCell
forall x. LSTMCell -> Rep LSTMCell x
forall a.
(forall x. a -> Rep a x) -> (forall x. Rep a x -> a) -> Generic a
$cto :: forall x. Rep LSTMCell x -> LSTMCell
$cfrom :: forall x. LSTMCell -> Rep LSTMCell x
Generic, Int -> LSTMCell -> ShowS
[LSTMCell] -> ShowS
LSTMCell -> String
forall a.
(Int -> a -> ShowS) -> (a -> String) -> ([a] -> ShowS) -> Show a
showList :: [LSTMCell] -> ShowS
$cshowList :: [LSTMCell] -> ShowS
show :: LSTMCell -> String
$cshow :: LSTMCell -> String
showsPrec :: Int -> LSTMCell -> ShowS
$cshowsPrec :: Int -> LSTMCell -> ShowS
Show)
lstmCellForward ::
LSTMCell ->
(Tensor, Tensor) ->
Tensor ->
(Tensor, Tensor)
lstmCellForward :: LSTMCell -> (Tensor, Tensor) -> Tensor -> (Tensor, Tensor)
lstmCellForward LSTMCell {Parameter
biasHH :: Parameter
biasIH :: Parameter
weightsHH :: Parameter
weightsIH :: Parameter
biasHH :: LSTMCell -> Parameter
biasIH :: LSTMCell -> Parameter
weightsHH :: LSTMCell -> Parameter
weightsIH :: LSTMCell -> Parameter
..} (Tensor, Tensor)
hidden Tensor
input =
Tensor
-> Tensor
-> Tensor
-> Tensor
-> (Tensor, Tensor)
-> Tensor
-> (Tensor, Tensor)
lstmCell Tensor
weightsIH' Tensor
weightsHH' Tensor
biasIH' Tensor
biasHH' (Tensor, Tensor)
hidden Tensor
input
where
weightsIH' :: Tensor
weightsIH' = Parameter -> Tensor
toDependent Parameter
weightsIH
weightsHH' :: Tensor
weightsHH' = Parameter -> Tensor
toDependent Parameter
weightsHH
biasIH' :: Tensor
biasIH' = Parameter -> Tensor
toDependent Parameter
biasIH
biasHH' :: Tensor
biasHH' = Parameter -> Tensor
toDependent Parameter
biasHH
instance Parameterized LSTMCell
instance Randomizable LSTMSpec LSTMCell where
sample :: LSTMSpec -> IO LSTMCell
sample LSTMSpec {Int
hiddenSize :: Int
inputSize :: Int
hiddenSize :: LSTMSpec -> Int
inputSize :: LSTMSpec -> Int
..} = do
Parameter
weightsIH' <- Tensor -> IO Parameter
makeIndependent forall (m :: * -> *) a b. Monad m => (a -> m b) -> m a -> m b
=<< Tensor -> Tensor
initScale forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> [Int] -> IO Tensor
randIO' [Int
4 forall a. Num a => a -> a -> a
* Int
hiddenSize, Int
inputSize]
Parameter
weightsHH' <- Tensor -> IO Parameter
makeIndependent forall (m :: * -> *) a b. Monad m => (a -> m b) -> m a -> m b
=<< Tensor -> Tensor
initScale forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> [Int] -> IO Tensor
randIO' [Int
4 forall a. Num a => a -> a -> a
* Int
hiddenSize, Int
hiddenSize]
Parameter
biasIH' <- Tensor -> IO Parameter
makeIndependent forall (m :: * -> *) a b. Monad m => (a -> m b) -> m a -> m b
=<< Tensor -> Tensor
initScale forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> [Int] -> IO Tensor
randIO' [Int
4 forall a. Num a => a -> a -> a
* Int
hiddenSize]
Parameter
biasHH' <- Tensor -> IO Parameter
makeIndependent forall (m :: * -> *) a b. Monad m => (a -> m b) -> m a -> m b
=<< Tensor -> Tensor
initScale forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> [Int] -> IO Tensor
randIO' [Int
4 forall a. Num a => a -> a -> a
* Int
hiddenSize]
forall (f :: * -> *) a. Applicative f => a -> f a
pure forall a b. (a -> b) -> a -> b
$
LSTMCell
{ weightsIH :: Parameter
weightsIH = Parameter
weightsIH',
weightsHH :: Parameter
weightsHH = Parameter
weightsHH',
biasIH :: Parameter
biasIH = Parameter
biasIH',
biasHH :: Parameter
biasHH = Parameter
biasHH'
}
where
scale :: Float
scale = forall a. Floating a => a -> a
Prelude.sqrt forall a b. (a -> b) -> a -> b
$ Float
1.0 forall a. Fractional a => a -> a -> a
/ forall a b. (Integral a, Num b) => a -> b
fromIntegral Int
hiddenSize :: Float
initScale :: Tensor -> Tensor
initScale = forall a. Scalar a => a -> Tensor -> Tensor
subScalar Float
scale forall b c a. (b -> c) -> (a -> b) -> a -> c
. forall a. Scalar a => a -> Tensor -> Tensor
mulScalar Float
scale forall b c a. (b -> c) -> (a -> b) -> a -> c
. forall a. Scalar a => a -> Tensor -> Tensor
mulScalar (Float
2.0 :: Float)